

MAGSWITCH PLAY 30X7

P/N: 81401193 + 1(303) 468.0622 magswitch.com

ELAY50x5 | P/N 81401320

可変フィールド出力(VFO)技術を搭載した本製品はクレーン用途向けに設計されたモデルです。磁力を0%から100%まで細かく調整できるため、デスタックや単一・複数シートの搬送に対応可能です。CANopenプロトコルに対応しており、同一CANopenバス上で複数のツールを統合し、同時に制御することができます。また、ロボットハンドとしても優れた性能を発揮するツールです。

警告!

ワークと接触していない状態での操作は行わないでください

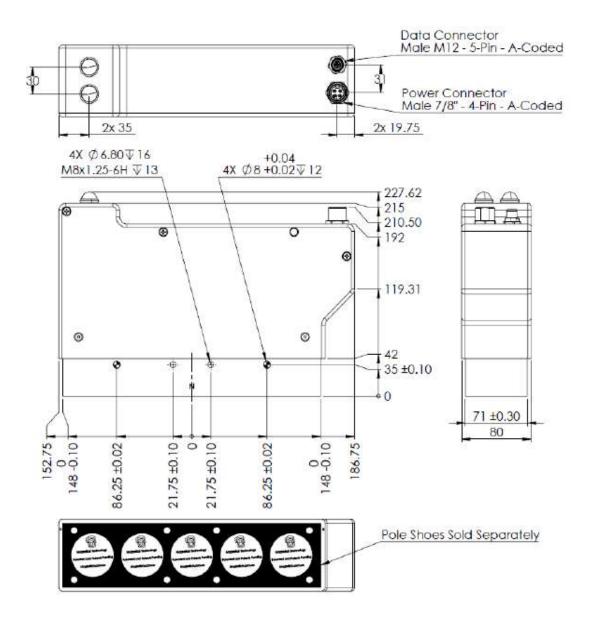
仕様

最大保持力1,2	1151 kg
最大せん断保持力1,2	230 kg
定格供給電圧	24 V DC
ピーク電力消費	5.5 A DC @ 24 V DC
重量	15.4 kg
コネクター仕様	オス M12x1.0 – 5 Pin – Aコード
	電源:オス 7/8インチ - 4Pin - Aコード
取付オプション	8-M8-M8-8

板厚mm						19.05
最大保持力kg 1,2,5	183	289	858	1114	1150	1191

デスタック設定 デスタックの最小厚さ mm	1	2	3	4	5	6
部分作動	22%	27%	33%	38%	40%	44%

- 1 表面粗度 63μ インチのSAE1018鋼と最適なポールシューを使用して 実験室環境にて得られた値です。実際の最大保持力と安全使用荷重には様々な要因が影響します。 配置する前に、愛知産業にお問い合わせください。 それぞれの用途でマグスイッチの製品をテストしてください。
- 2 すべてのデータはフラットポールシューを装着したユニットに適用されます。
- 3 SAE1018鋼、L=200mm、W=600mmを使用して得られた値です。
- 4 数値は±5の範囲内で変動することがあります。
- 5 上記の最大保持力は安全保持力ではありません。設計者はツールを設計する際に、 必ず安全係数を考慮してください。マグスイッチ社はSWL=5:1を推奨しています。



MAGSWITCH PLAY 30X7

P/N: 81401193 + 1(303) 468.0622 magswitch.com

ご使用にはポールシュー(別売)が必要です。

標準ポールシューキット	88001109
ELAY50x5 標準 EOAT ブラケット	8800924

電気的特性

パラメーター	数值
入力電圧範囲	24 ± 5% V DC
定格電流(ピーク)	5.5 A DC @ 24 V DC
定格電流(連続)	0.65 A DC @ 24 V DC
コネクターのタイプ	電源: Male 7/8" – 4 Pin – A-コード
	データ:オスM12-5ピン-Aコード

周辺条件

パラメーター	範囲
周囲温度(運転時)	-10から+40°C
周囲温度(保管時)	-25から+80°C
相対湿度(結露なし)	0-95%

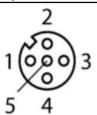
LEDカラーコード

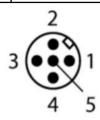
機能/状態	青LEDの状態	緑LEDの状態
マグネットに電源が入っていない	オフ	オフ
原点復帰待ち	点灯	点灯
マグネット動作オフ	オン	オフ
マグネット動作オン100%(フェールセーフ)	オン	オン
マグネット部分的オン	オン	点灯
標準キャリブレーション処理	キャリブレーション開始時点灯	マグネット状態
	ステップ1-4確認時点灯	によりオン/オフ
オートキャリブレーション処理	開始/完了確認時点灯	同上

コネクターのピンアウト

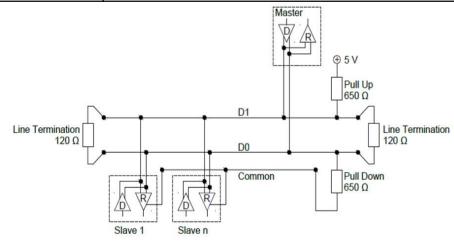
7/8" 4-Pin

ピン#	機能	ロジック
1	Vin(V+)	+24V DC
2	Vin (V+) (internally connected to pin 1)	+24V DC
3	GND (V-)	GND
4	GND (V-) (internally connected to pin 3)	GND





接続側:ピン割り当て 7/8インチ 8インチ ツール側:ピン割り当てM12、5ピン 4ピン、A コード、メスコネクタ(ソケット側) A コード、オスコネクタ(ピン側)


ピン#	機能	ロジック
1	信号シールド	-
2	(内部で切断されている)	-
3	GND	GND
4	CANopenバスハイ	TX/RX high line (D1) (CAN H)
5	CANopenバスロー	TX/RX low line (D0) (CAN L)

ケーブル側: M12 5Pin Aコード メスコネクタ(ソケット側) ツール側: M12 5Pin Aコード オスコネクタ (ピン側)

CANopen設定情報	
CANボーレート	250kBaud、設定可能
デフォルトCANノードID	127d= 7 Fh、設定可能
デバイス終端抵抗	120Ω 作動しない
マスター装置終端	マスター装置には必ずライン極性/終端があること、
	または450-650Ωのプルアップをハイライン(D1)(CAN_H)
	の+5Vに適応、450-650Ωのプルアップをローライン(D0)
	(CAN_H)のGNDに適応

CANopen NodelDの変更

- 1, オブジェクト2009hの現在のNodelDを確認します。
 - a. デフォルトのNodeID=14d=Eh
- 2, 2009 h に希望するNodelDを書き込みます。
 - a. ソフトウェアバージョン11以上:許容されるNodelDの値の範囲 = 1d-23d (Node IDが範囲外の場合はデフォルトで14になります)
 - b. ソフトウェアバージョン10以下:許容されるNodelDの値の範囲 = 1d-127d
- 3, 保存は、1010hサブインデックス02hに 1702257011d(65766173h)を書き込んでください。
- 4. オブジェクト1010hサブインデックス02hが1と等しくなるまで待ちます。
- 5、電源を一度落とし、再度つけます。
- 6, デバイスのNodelDが変更されます。

CANopenボーレートの変更

CANopenボーレートを変更する際は、統合/組立マニュアル1101334をご参照ください。使用可能なボーレートは10,20,50.125,500,1000kBaudです。

CANopen I/O サービスデータオブジェクト(SDO's)と機能

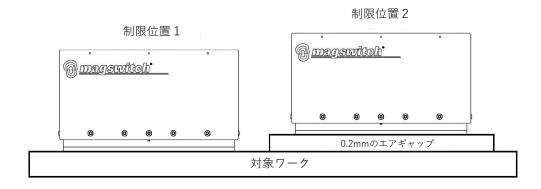
		クトサブインテ		ェクト(SDO's)と機能 _{概要}
				1= ホームマグネット
	2400	01	Move Enable	2= 2400:02で設定した位置へ移動
				0= 各移動後にトリガーをリセット
	2400	02	Set Position	ポジションは0-100%(増分は1)
				標準キャリブレーション:1=トリガー(標準キャリブレーシ
				ョン後、必ず0にリセット)
_	2400	03	Calibration Trigger	オートキャリブレーション:1=開始(1にセットされたキャリプレーション
\$ ·				999=終了 保存しない
ン				0= 1か999に設定後、トリガーをリセット
7	2400	04	Calibration Select	キャリブレーション保存オプション0-3から選択(4つまでキャリブレーション保存可
				デフォルト= 0
	2400	05	Sensitivity	より感度を高く = - x
	2400	05	Sensitivity	より感度を鈍く = x
				典型的な x の値 = 5,10,20
	2400	06	Calibration Mode	0= 標準キャリブレーション手順(ばら積みetc.向き)
	2400	00	Calibration Wode	1= オートキャリブレーション
	2500	01	Magnet Position	0-100%(<= 2 は 0 とみなす)
				0= オフ
	2500	02	Magnet State	1= 部分的オン
				2= マグネットオン100%(フェールセーフ)
	2500	03	Calibration State	0= S極、N極、部分在席のどれも範囲にない
	2000			4= N、S極、部分的に現在すべて範囲内に
				0= キャリブレーション中ではない
	2500	04	In Calibration	1= 標準キャリブレーション中
				2= オートキャリブレーション中
				0= キャリブレーション中ではない
		05		1= 最良の回路待ち
_	2500		Calibration step	2= 最悪の回路待ち
'n				3= S極待ち
_				4= N極待ち
アウ	2500	06	Cycle Count	マグネットがフルパワーを出した回数
7	2500	07	Home Status	0= 正しくホーム状態になっていない
				1= 正しくホーム状態である
	2500	08	Move Status	0= 完了していない
				1= 最後のセットの動作が完了している
	2500	09	Serial Number	マグスイッチマグネットのシリアルナンバー
	2500	0A	Magnet Software Version	マグスイッチソフトウェアバージョン
	2500	0B	Tool Type	E30では30、E50では50
	2005		CAN	84 h = 132d = 125 k Baudがデフォルト
	2005		CANopen Band Rate	変更前に設定マニュアル1101334を参照してください
i	2000		0411	NodelDは0~127が使用可能です
i	2009		CANopen NodelD	デフォルトは 7 Fh=127d

キャリブレーションの2ステップ 詳細はセットアップマニュアル1101334を参照

ステップ1

キャリブマッチ用リミットポジション1

オブジェクトCalState(2500:03h)は両極と部品との接触品質が、制限位置1、2そしてN極/S極のキャリブレーション信号によって境界づけられたゾーン内に収まっている場合、4を返します。

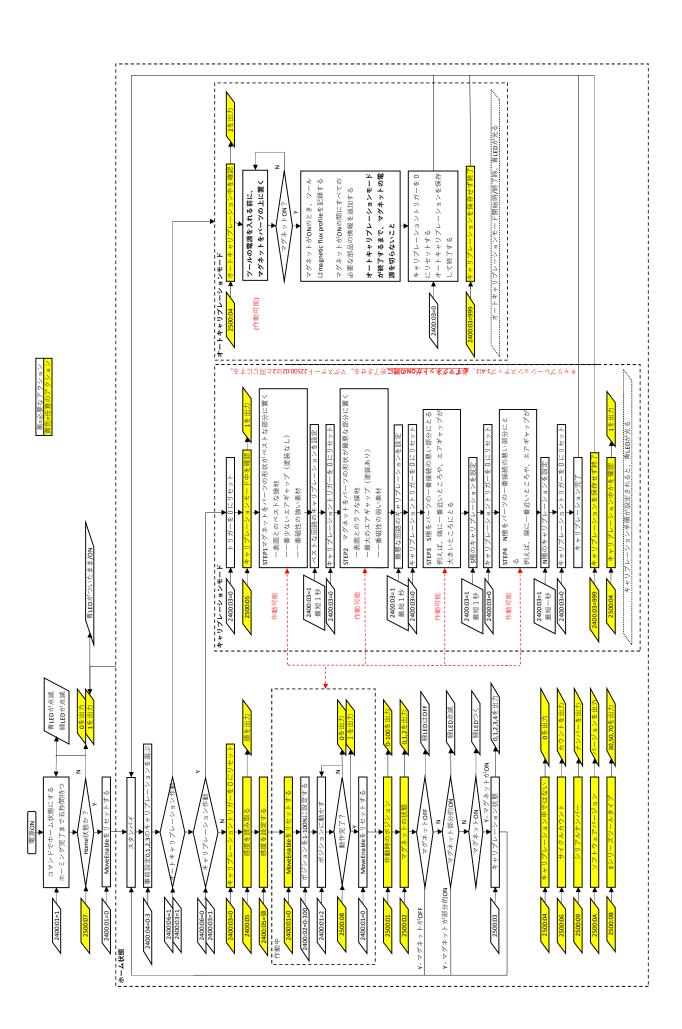

ステップ2

キャリブマッチ用リミットポジション2

注意: E30およびE50ツールに特有のN極およびS極のキャリブレーション手順3および4は ELAYキャリブレーション手順から削除されています。

これは、ELAYツールのN極とS極が長くなっており、ほとんどのお客様のアプリケーションでは、 磁石の長い辺を部品の端に近づけることが難しく、

反対側のポールのキャリブレーションにも影響を与えるためです。


次のフローはキャリブレーション0-4を入力・設定する際に必要なCANopenの信号を表しています。「アウトプット」オブジェクトはいつでもポーリング可能で、現在キャリブレーション過程のどこにいるのか確認できます。正しい磁場数値を保存するために、各キャリブレーションステップにおいてマグネットが完全にオンであることが重要です(SetPosition/OutPos=100)。

磁石がONで緑のライトが点灯していない限り、ツールは キャリブレーションステップ1および2を確認することを許可しません。 キャリブレーション手順のより詳細な情報は補足書1101340をご参照ください。

オートキャリブレーション手順

マグネットを動作オフにして、オブジェクト2400:04=1dを設定してから2400:03=1dを書込むとオートキャリブレーションモードを開始します。マグネットを希望する位置に置いてください。マグネットは一度動作オンになり緑のライトがつくと、現在の形状での磁場の強さを記録して、在席と認知するコンディションとして保存します。強磁場の稼働範囲を広げるため、ワークや設備を足すか調節をします。2400:03=0dと書き込むことで、オートキャリブレーションパラメーターが保存され通常運転が再開します。キャリブレーションの値が変わってしまうので、オートキャリブレーションが終了し保存されるまでは、マグネットを動作オフにしないでください。キャリブレーション範囲が実際の使用範囲を超えてしまったり、在席機能が正確でなくなる可能性があるので、マグネットはワーク以外のものに作動させないでください。

