

MAGSWITCH PLAY 30X7

P/N: 81401193 + 1(303) 468.0622 magswitch.com

ELAY30x5 | P/N 81401338

可変フィールド出力(VFO)技術を搭載した本製品はクレーン用途向けに設計されたモデルです。磁力を0%から100%まで細かく調整できるため、デスタックや単一・複数シートの搬送に対応可能です。CANopenプロトコルに対応しており、同一CANopenバス上で複数のツールを統合し、同時に制御することができます。またロボットハンドとしても優れた性能を発揮するツールです。

警告!

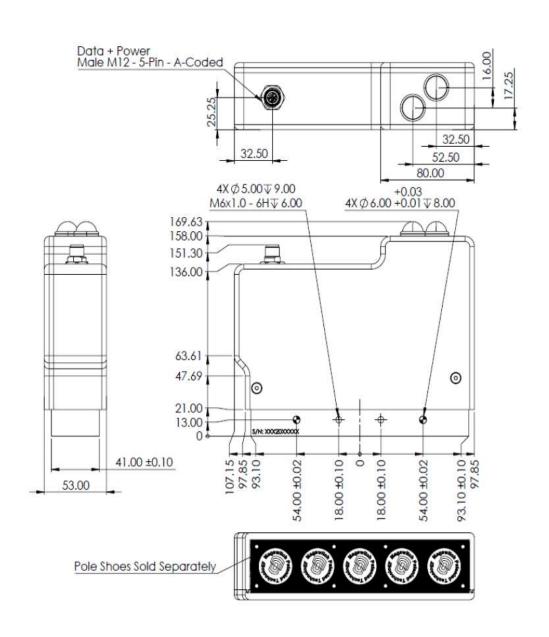
ワークと接触していない状態での操作は行わないでください

仕様

2186.9 N
0.4 mm
24 V DC
2.5 A DC @ 24 V DC
5.7 kg
オス M12x1.0 – 5 Pin – Aコード
6-M6-M6-6
186.2mm x 41mm

板厚mm			1.5								
最大保持力N 1,2,5	263.8	536.4	654.1	862	1016	1274	1646	1803	2002	2185	2186

- 1 表面粗度63 μ インチのSAE1018鋼と最適なポールシューを使用して、 実験室環境にて得られた値です。実際の最大保持力と安全使用荷重には様々な 要因が影響します。配置する前に、愛知産業にお問い合わせください。 それぞれの用途でマグスイッチの製品をテストしてください。
- 2 すべてのデータはフラットポールシューを装着したユニットに適用されます。
- **3** SAE1018鋼、L=200mm、W=200mmを使用して得られた値です。
- 4 数値は±5の範囲内で変動することがあります。
- 5 上記の最大保持力は安全保持力ではありません。設計者はツールを設計する際に 必ず安全係数を考慮してください。マグスイッチ社はSWL=5:1を推奨しています。



MAGSWITCH PLAY 30X7

P/N: 81401193 + 1(303) 468.0622 magswitch.com

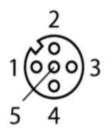
ご使用にはポールシュー(別売)が必要です。

標準ポールシューキット	88001110
ELAY30x5 薄型ターゲットポールシューキット	8800968
ELAY30x5 標準 EOAT ブラケット	8800758

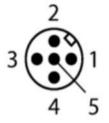
電気的特性

パラメーター	数值
入力電圧範囲	24 ± 5% V DC
突入電流(70 ms持続	3 A Max
定格電流(ピーク)	2.5 A DC @ 24 V DC
定格電流(連続)	1 A DC @ 24 V DC
コネクターのタイプ	オスM12-5ピン-Aコード

周辺条件


パラメーター	範囲
周囲温度(運転時)	-10から+40°C
周囲温度(保管時)	-25から+80°C
相対湿度(結露なし)	0-95%

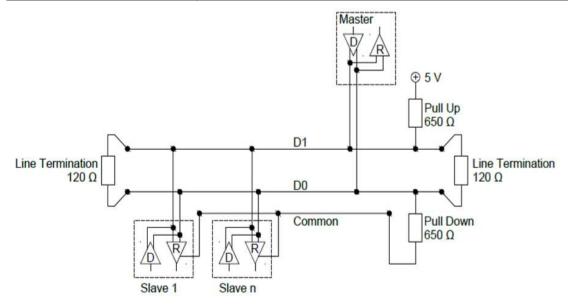
LEDカラーコード


機能/状態	青LEDの状態	緑LEDの状態
マグネットに電源が入っていない	オフ	オフ
原点復帰待ち	点灯	点灯
マグネット動作オフ	オン	オフ
マグネット動作オン100%(フェールセーフ)	オン	オン
マグネット部分的オン	オン	点灯
標準キャリブレーション処理	キャリブレーション開始時点灯	マグネット状態
	ステップ1-4確認時点灯	によりオン/オフ
オートキャリブレーション処理	開始/完了確認時点灯	同上

コネクターのピンアウト

ピン#	機能	ロジック
1	シグナルシールド	-
2	Vin(V+)	+24V DC
3	GND(V-)	GND
4	CANopenバス ハイ	TX/RX ハイライン(D1)(CAN H
5	CANopenバス ロー	TX/RX ローライン(D1)(CAN H

ケーブル側:ピン配置M12,5ピン Aコード,メスコネクタ(ソケット側)



マグネット側:ピン配置M12,5ピン Aコード,オスコネクタ(ピン側)

CANopen設定情報

CANボーレート	250kBaud、設定可能
デフォルトCANノードID	127d= 7 Fh、設定可能
デバイス終端抵抗	120Ω作動しない
マスター装置終端	マスター装置には必ずライン極性/終端があること、
	または450-650Ωのプルアップをハイライン(D1)(CAN_H)
	の+5Vに適応、450-650Ωのプルアップをローライン(D0)
	(CAN_H)のGNDに適応

CANopen NodelDの変更

- 1, オブジェクト2009hの現在のNodelDを確認します。
 - a. デフォルトのNodeID=127d=7Fn
- 2, 2009 h に希望するNodelDを書き込みます。
 - a. 使用可能なNodeIDの範囲 = 1d-127d
- 3, 保存は、1010hサブインデックス02hに 1702257011d(65766173h)を書き込んでください。
- 4, オブジェクト1010hサブインデックス02hが1と等しくなるまで待ちます。
- 5, 電源を一度落とし、再度つけます。
- 6, デバイスのNodelDが変更されます。

CANopenボーレートの変更(ソフトウェアバージョン3以上では設定できません)

CANopenボーレートを変更する際は、統合/組立マニュアル1101334をご参照ください。使用可能なボーレートは10,20,50.125,500,1000kBaudです。

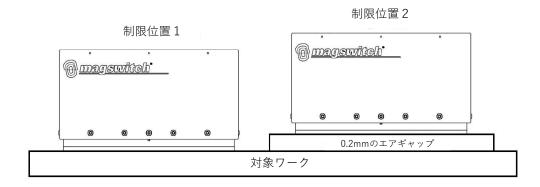
CANopen I/O サービスデータオブジェクト(SDO's)と機能

		リーヒス フトサブインデック		ェクト(SDO's)と機能 _{概要}
<i>y</i> -17	7771		Z = 170°	1= ホームマグネット
	2400	01	Move Enable	2= 2400:02で設定した位置へ移動
				0= 各移動後にトリガーをリセット
	2400	02	Set Position	ポジションは0-100%(増分は1)
				標準キャリブレーション:1=トリガー(標準キャリブレーシ
				ョン後、必ず0にリセット)
<u> </u>	2400	03	Calibration Trigger	オートキャリブレーション: 1 = 開始(1にセットされたキャリプレーション
~ ~ ~				999 = 終了 保存しない
7,	0.400			0= 1か999に設定後、トリガーをリセット
	2400	04	Calibration Select	キャリブ・レーション保存オプション0-3から選択(4つまでキャリブ・レーション保存可
				デフォルト= 0 より感度を高く= - x
	2400	05	Sensitivity	より感度を鈍く = x
				典型的な x の値 = 5,10,20
	0.400			0= 標準キャリブレーション手順(ばら積みetc.向き)
	2400	06	Calibration Mode	1= オートキャリブレーション
	2500	01	Magnet Position	0-100%(<= 2 は 0 とみなす)
				0= オフ
	2500	02	Magnet State	1= 部分的オン
				2= マグネットオン100%(フェールセーフ)
				0= S極、N極、部分在席のどれも範囲にない
	2500	03	Calibration State	1= N極のみ範囲内 2= S極のみ範囲内
	2300	03	Calibration State	3= 両極とも範囲内、部分在席なし
				4= S極、N極、部分在席のすべてが範囲内
				0= キャリブレーション中ではない
	2500	2500 04 In Ca	In Calibration	1= 標準キャリブレーション中
				2= オートキャリブレーション中
	2500 05		0= キャリブレーション中ではない	
\ \frac{\sigma}{\triangle}				1= 最良の回路待ち
٦ ٢		Calibration step	2= 最悪の回路待ち	
7				3= S極待ち
F	2500	06	Cycle Count	4= N極待ち マグネットがフルパワーを出した回数
	2300	06	Cycle Count	0= 正しくホーム状態になっていない
	2500	07	Home Status	1= 正しくホーム状態である
				0= 完了していない
	2500	08	Move Status	1= 最後のセットの動作が完了している
	2500	09	Serial Number	マグスイッチマグネットのシリアルナンバー
	2500	0A	Magnet Software	マグスイッチソフトウェアバージョン
			Version	, , , , , , , , , , , , , , , , , , , ,
	2500	0B	Tool Type	E30では30、E50では50
	2005	CANopen Band Rate		84 h = 132d = 125 k Baudがデフォルト
				変更前に設定マニュアル1101334を参照してください NodoIDは0~127が使用可能です
	2009		CANopen NodeID	NodeIDは0〜127が使用可能です デフォルトは 7 Fh=127d
				/ / ¼ /v W I N=1710

ステップ1

キャリブマッチ用リミットポジション1

オブジェクトCalState(2500:03h)は両極と部品との 接触品質が、制限位置1、2そしてN極/S極の キャリブレーション信号によって境界づけられた ゾーン内に収まっている場合、4を返します。


ステップ2

キャリブマッチ用リミットポジション2

注意: E30およびE50ツールに特有のN極およびS極のキャリブレーション手順3および4は ELAYキャリブレーション手順から削除されています。

これは、ELAYツールのN極とS極が長くなっており、ほとんどの顧客のアプリケーションでは、 磁石の長い辺を部品の端に近づけることが難しく、

反対側のポールのキャリブレーションにも影響を与えるためです。

次のフローはキャリブレーション0-4を入力・設定する際に必要なCANopenの信号を 表しています。「アウトプット」オブジェクトはいつでもポーリング可能で、 現在キャリブレーション過程のどこにいるのか確認できます。 正しい磁場数値を保存するために、各キャリブレーションステップにおいて マグネットが完全にオンであることが重要です(SetPosition/OutPos=100)。

磁石がONで緑のライトが点灯していない限り、ツールは

キャリブレーションステップ1および2を確認することを許可しません。

キャリブレーション手順のより詳細な情報は補足書1101340をご参照ください。

オートキャリブレーション手順

マグネットを動作オフにして、オブジェクト2400: $\overline{04=1}$ dを設定してから2400: $\overline{03=1}$ dを 書込むとオートキャリブレーションモードを開始します。マグネットを希望する位置に 置いてください。マグネットは一度動作オンになり緑のライトがつくと、現在の形状での 磁場の強さを記録して、在席と認知するコンディションとして保存します。 強磁場の稼働範囲を広げるため、ワークや設備を足すか調節をします。 2400:03=0dと書き込むことで、オートキャリブレーションパラメーターが保存され 通常運転が再開します。キャリブレーションの値が変わってしまうので、 オートキャリブレーションが終了し保存されるまでは、マグネットを動作オフに しないでください。キャリブレーション範囲が実際の使用範囲を超えてしまったり、 在席機能が正確でなくなる可能性があるので、マグネットはワーク以外のものに 作動させないでください。

